

Fraktale und Zufall

Ass.-Prof. Dr. Wolfgang Trutschnig

Arbeitsgruppe Stochastik/Statistik
Fachbereich Mathematik Universität Salzburg www.trutschnig.net

Tag der Mathematik, PH Salzburg, März 2017

Kurz-CV:

- Studium und Doktorat in Technischer Mathematik an der TU Wien.
- 2008-2013: Postdoc/Associate Researcher im European Center for Soft Computing in Nordspanien.
- In Salzburg seit 2013-10.
- 2006-2013: Statistik-Consultant in diversen Firmen (Allianz, Telekom, etc.).
- 2014: Gründung der correlate OG (Consulting Statistik \& Data Mining).
- Forschungsschwerpunkt: Grundlagenforschung in Wahrscheinlichkeitstheorie und Statistik.
- Modellierung von Abhängigkeiten (Copulas)
- Dynamische Systeme
- Fraktale

Das Chaos Game

-000

000
00000000

Fraktale Worte und Dimensionen

The Chaos Game at work

Tag der Mathematik

- Wir betrachten das gleichseitige Dreieck Δ mit Eckpunkten $E_{1}=(0,0), E_{2}=(1,0)$ und $E_{3}=(1 / 2, \sqrt{3} / 2)$ und nennen $(0,0)$ die erste, $(1,0)$ die zweite und $(1 / 2, \sqrt{3} / 2)$ die dritte Ecke.
- $z_{0} \in[0,1]^{2}$ sei ein beliebiger Punkt.
- In einer Urne liegen drei Kugeln; eine Kugel trägt die Nummer 1, eine die Nummer 2, und eine die Nummer 3.
- Wir ziehen zufällig (!) eine Kugel, erhalten die Kugel mit der Zahl $i_{1} \in\{1,2,3\}$ und setzen

$$
z_{1}=\frac{1}{2}\left(z_{0}+E_{i_{1}}\right)
$$

i.e. z_{1} ist der Mittelpunkt der Strecke $z_{0} \rightarrow E_{i_{1}}$.

- Danach legen wir die Kugel zurück.
- Mit z_{1} verfahren wir analog, ziehen $i_{2} \in\{1,2,3\}$ und setzen $z_{2}=\frac{1}{2}\left(z_{1}+E_{i_{2}}\right)$.
- Nach n Schritten erhalten wir $z_{0}, z_{1}, z_{2}, z_{3}, \ldots z_{n}$.
- Plotten der Strecken $z_{0} \rightarrow z_{1}, z_{1} \rightarrow z_{2}, z_{2} \rightarrow z_{3}$ bzw. der Punkte $z_{0}, z_{1}, z_{2}, z_{3}, \ldots z_{n}$ liefert die nachfolgenden Grafiken.

Das Chaos Game

0000

000
00000000

Exkurs und Übungen

The Chaos Game at work

Wolfgang Trutschnig
Tag der Mathematik

The Chaos Game at work

Step: 0

Step: 3

Step: 1

Step: 4

Step: 2

Step: 5

Konstruktion des Sierpinski Dreiecks

- Wir starten mit dem gleichseitigen Dreieck Δ_{0} mit Eckpunkten $P_{1}=(0,0), P_{2}=(1,0)$ und $P_{3}=(1 / 2, \sqrt{3} / 2)$.
- Wir markieren die Seitenmittelpunkte und bilden so vier kleinere, gleichseitige Dreiecke und entfernen das mittlere Dreieck (ohne Rand).
- Im ersten Schritt bleiben also 3 kongruente, gleichseitige Dreiecke übrig.
- Mit jedem der 3 Dreiecke verfahren wir analog und erhalten so insgesamt 9 kleine gleichseitige Dreiecke.
- Mit jedem der 9 Dreiecke verfahren wir analog und erhalten so insgesamt 27 kleine gleichseitige Dreiecke, etc.
- Die im n-ten Schritt verbleibende Menge Δ_{n} besteht also aus 3^{n} kleinen, gleichseitigen Dreiecken.
- $\Delta_{\infty}:=\bigcap_{n=1}^{\infty} \Delta_{n}$ heisst Sierpinski Dreieck.
- Wie gross ist die Fäche $F\left(\Delta_{\infty}\right)$ von Δ_{∞} ? Gilt $\Delta_{\infty}=\emptyset$?

Antworten:

- Es bleiben überabzählbar viele Punkte übrig! Warum?
- Wir berechnen die Fäche $F\left(\Delta_{\infty}\right)$ von Δ_{∞} :
- $F\left(\Delta_{0}\right)=\frac{\sqrt{3}}{4}$
- $F\left(\Delta_{1}\right)=\frac{\sqrt{3}}{4} \frac{3}{4}$
- $F\left(\Delta_{2}\right)=\frac{\sqrt{3}}{4}\left(\frac{3}{4}\right)^{2}$
- ...
- $F\left(\Delta_{n}\right)=\frac{\sqrt{3}}{4}\left(\frac{3}{4}\right)^{n}$
- $F\left(\Delta_{\infty}\right)=\lim _{n \rightarrow \infty} F\left(\Delta_{n}\right)=\lim _{n \rightarrow \infty} \frac{\sqrt{3}}{4}\left(\frac{3}{4}\right)^{n}=0$
- Die Fläche von Δ_{∞} is also null, obwohl überabzählbar viele Punkte in Δ_{∞} liegen.
- Δ_{∞} ist ein klassisches selbstähnliches Fraktal.
- Intuitiv nicht ein- und nicht zweidimensional.
- Hausdorff Dimension $\operatorname{dim}_{H}\left(\Delta_{\infty}\right)=\frac{\log 3}{\log 2}$ - woher kommt dieser Ausdruck?
- Wir formalisieren das chaos game und bestimmen jene drei Punkte, die in einem Schritt ausgehend vom Punkt $z_{0}=(x, y)$ erreicht werden können:
- E_{1} gezogen: $z_{1}=\frac{1}{2}((x, y)+(0,0))=\frac{1}{2}(x, y)=: f_{1}(x, y)$
- E_{2} gezogen: $z_{1}=\frac{1}{2}((x, y)+(1,0))=f_{1}(x, y)+\left(\frac{1}{2}, 0\right)=: f_{2}(x, y)$
- E_{3} gezogen: $z_{1}=\frac{1}{2}\left((x, y)+\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\right)=f_{1}(x, y)+\left(\frac{1}{4}, \frac{\sqrt{3}}{4}\right)=: f_{3}(x, y)$
- Alternative Interpretation des chaos games:
- $z_{0}=\left(x_{0}, y_{0}\right) \in[0,1]^{2}$ sei ein beliebiger Punkt.
- Wir ziehen zufällig eine Zahl i_{1} aus der Menge $\{1,2,3\}$, wobei p_{i} die Wahrscheinlichkeit dafür bezeichnet, Ecke i zu ziehen, i.e. $p_{1}=p_{2}=p_{3}=\frac{1}{3}$.
- Wir setzen $z_{1}:=\left(x_{1}, y_{1}\right)=f_{i_{1}}\left(x_{0}, y_{0}\right)$.
- Mit z_{1} verfahren wir analog, ziehen $i_{2} \in\{1,2,3\}$ und setzen $z_{2}=\left(x_{2}, y_{2}\right)=f_{i_{2}}\left(x_{1}, y_{1}\right)$.
- Analog erhalten wir $z_{3}, z_{4}, \ldots, z_{n}$.
- Wir ziehen also in jedem Schritt zufällig eine der drei Funktionen und wenden sie auf den aktuellen Punkt an.
- Was haben die Funktionen f_{1}, f_{2}, f_{3} mit dem Sierpinski Dreieck zu tun?
- Wie schaut $f_{1}\left(\Delta_{\infty}\right)$ aus?
- Wie schaut $f_{2}\left(\Delta_{\infty}\right)$ aus?
- Wie schaut $f_{3}\left(\Delta_{\infty}\right)$ aus?
- f_{1}, f_{2}, f_{3} sind schrumpfende Ähnlichkeitsabbildungen und erfüllen

$$
\left\|f_{i}(z)-f_{i}(w)\right\|_{2}=\frac{1}{2}\|z-w\|_{2}
$$

- Der Faktor $\frac{1}{2}$ heisst Schrumpfungsfaktor.
- Exakter Zusammenhang (Hutchinson Fixpunktgleichung)

$$
\Delta_{\infty}=f_{1}\left(\Delta_{\infty}\right) \cup f_{2}\left(\Delta_{\infty}\right) \cup f_{3}\left(\Delta_{\infty}\right)=\bigcup_{i=1}^{3} f_{i}\left(\Delta_{\infty}\right)=\mathcal{W}\left(\Delta_{\infty}\right)
$$

- \mathcal{W} heisst Hutchinson Operator, oft auch collage Operator.
- $\left\{\left(f_{i}\right)_{i=1}^{3},\left(p_{i}\right)_{i=1}^{3}\right\}$ heisst Iteriertes Funktionensystem mit Wahrscheinlichkeiten (IFSP).
- Δ_{∞} ist der Attraktor des IFSP $\left\{\left(f_{i}\right)_{i=1}^{3},\left(p_{i}\right)_{i=1}^{3}\right\}$.
- Warum Attraktor?
- Was passiert, wenn wir mit einer anderen Menge S (Quadrat, Kreis, Sechseck, etc.) als mit Δ_{0} starten, die Menge mittels f_{1}, f_{2}, f_{3} schrumpfen, $\mathcal{W}(S)=\bigcup_{i=1}^{3} f_{i}(S)$ betrachten und dann den Prozess mit $\mathcal{W}(S)$ als Startmenge wiederholen?
- Wir erhalten also $\mathcal{W}(S), \underbrace{\mathcal{W}(\mathcal{W}(S))}_{=: \mathcal{W}^{2}(S)}, \ldots, \mathcal{W}^{n}(S)$.
- Welche Form hat $\mathcal{W}^{n}(S)$?

0000000

Formalisierung des Chaos Games und der Attraktor

Step: 3

Step: 4

Step: 2

Step: 5

Fraktale Worte und Dimensionen

0000

Formalisierung des Chaos Games und der Attraktor

Step: 0

Step: 3

Step: 1

Step: 4

Step: 2

Step: 5

Das Chaos Game
Exkurs und Übungen 00000

Fraktale Worte und Dimensionen

Step: 3

Step: 1

Step: 4

Step: 2

Step: 5

Fraktale Worte und Dimensionen Math2School

0000

000
00000000

Formalisierung des Chaos Games und der Attraktor

Step: 8

- 'Unabhängig' von der Startmenge S erhalten wir nach hinreichend vielen Schritten immer eine dem Sierpinski Dreieck sehr ähnliche Menge.
- Die collagen $\mathcal{W}^{n}(S)$ zieht es immer mehr zum Sierpinski Dreieck Δ_{∞} hin.
- Immer noch unklar: Warum erzeugt das Chaos Game ebenfalls das Sierpinski Dreieck?
- Heuristische Erkärung für den Fall, dass der Startpunkt zo schon im Sierpinski Dreieck liegt:
- Unabhängig davon, welche Kugel (welche Funktion) wir im ersten Schritt ziehen, z_{1} liegt wieder im Sierpinski Dreieck (ein Mal drin, immer drin).
- Bei 100.000 Ziehungen erwarten wir mehr als 30.000 Mal jede der Kugeln (Funktionen) gezogen zu haben.
- In mindestens 30.000 Schritten landen wir also im unteren linken Dreieck der Fläche $\frac{\sqrt{3}}{4} \frac{1}{4}$.
- In mindestens 30.000 Schritten im unteren rechten Dreieck der Fläche $\frac{\sqrt{3}}{4} \frac{1}{4}$.
- In mindestens 30.000 Schritten im oberen Dreieck der Fläche $\frac{\sqrt{3}}{4} \frac{1}{4}$.
- Wir erwarten ebenfalls, jede zwei, jede drei und jede vierelementige Kombination (Bsp: ($1,2,3,1$) einige Male gezogen zu haben, daher landen wir auch oft in allen kleineren Dreiecken der Grösse $\frac{\sqrt{3}}{4} \frac{1}{4^{4}}$.

Fraktale in der Natur

Wolfgang Trutschnig
Tag der Mathematik

Fraktale in der Natur

Wolfgang Trutschnig
Tag der Mathematik

Wolfgang Trutschnig
Tag der Mathematik

00000000
00000
Fraktale in der Natur

- Das Chaos Game funktioniert nicht nur beim Sierpinski Dreieck sondern allgemein bei selbstähnlichen Fraktalen.
- Die folgenden Seiten zeigen weitere selbstähnliche Fraktale: Stern, Wolke, Koch Kurve und Hata Tree.

Übungen:

- Finden Sie Iterierte Funktionensysteme (also endlich viele Kontraktionen f_{i}), die den jeweiligen Fraktalen zugrunde liegen.
- Sie können die Funktionen f_{i} entweder auf \mathbb{R}^{2} oder gleich auf \mathbb{C} definieren.
- Geben Sie für jedes der Iterierten Funktionensysteme die Kontraktionskonstanten (Stauchungsfaktoren) an.
- Im Falle der Koch Kurve berechnen Sie ausserdem die Länge der Koch Kurve und die Fläche, die die Kurve mit der x-Achse einschliesst.

00000000

0,000

Star: Orbit Chaos Game

Star: Histogram

Cloud: Orbit Chaos Game

Cloud: Histogram

Exkurs und Übungen

Koch Kurve: Orbit Chaos Game

Koch Kurve: Histogram

count
100200300400

Exkurs und Übungen

00000000

Hata Tree: Histogram

- Die Konstruktion selbstähnlicher Fraktale mit Hilfe des Chaos Game lässt sich noch viel weiter treiben.
- Im Buch 'Fractals Everywhere' von Michael Barnsley sind unzählige weitere Beispiele angeführt.
- Eines davon zeigt das Wort 'Coke' so geschrieben, dass in jedem Buchstaben wieder das Wort selbst zu lesen ist - selfspelling words.

- 2016: Programmierung des R-packages ChaosGame zusammen mit M. Schreyer (Doktorandin).
- Das package ist open source und kann als add-on der Statistik-Software R installiert werden.
- Das package dient zur Erzeugung fraktaler Worte.
- Der user muss nur das Wort eingeben und ob der plot 2d oder 3d sein soll, alles andere übernimmt das package.
- Zusätzliche einstellbar ist die Anzahl der Punkt, die Fläche auf die projiziert wird, etc.
- Link R-Code zur Generierung fraktaler Wörter
- Das Sierpinski Dreieck ist mindestens eindimensional (es enthält Linien) und höchstens zweidimensional (Teilmenge von \mathbb{R}).
- Weder Dimension eins noch Dimension zwei passt.
- Es gibt mehrere Erweiterungen des Dimensionsbegriffs auch nicht ganzzahlige Werte.
- Die bekannteste davon ist die Hausdorff-Besicovitch Dimension (Felix Hausdorff, 1918), die auf dem äusseren Hausdorff Mass beruht.
- Für selbstänhliche Mengen ist die Hausdorff-Besicovitch Dimension gleich der sogenannten Selbstähnlichkeitsdimension.
- Schlüsselfrage: Aus wie vielen geschrumpften Teilen von sich selbst lässt sich die Menge zusammensetzen?
- Gerade Linie der Länge 1 (Dimension $d=1$):
- Schrumpfungsfaktor $\frac{1}{2}: 2$ Teile; $2\left(\frac{1}{2}\right)^{1}=1$
- Schrumpfungsfaktor $\frac{1}{3}$: 3 Teile; $3\left(\frac{1}{3}\right)^{1}=1$
- Einheitsquadrat (Dimension $d=2$):
- Schrumpfungsfaktor $\frac{1}{2}: 4$ Teile; $4\left(\frac{1}{2}\right)^{2}=1$
- Schrumpfungsfaktor $\frac{1}{3}$: 9 Teile; $9\left(\frac{1}{3}\right)^{2}=1$
- Einheitswürfel (Dimension $d=3$):
- Schrumpfungsfaktor $\frac{1}{2}: 8$ Teile; $8\left(\frac{1}{2}\right)^{3}=1$
-Schrumpfungsfaktor $\frac{1}{3}$: 27 Teile; $27\left(\frac{1}{3}\right)^{3}=1$
- Sierpinski Dreieck Δ_{∞} :

$$
\begin{aligned}
3\left(\frac{1}{2}\right)^{d} & =1 \\
3 & =2^{d} \\
d & =\frac{\log 3}{\log 2} \approx 1.58
\end{aligned}
$$

- Die Selbstähnlichkeitsdimension von Δ_{∞} ist $\frac{\log 3}{\log 2}$.
- Allgemein kann die Hausdorff-Besicovitch Dimension selbstähnlicher Mengen wiefolgt berechnet werden.
- Seien $f_{1}, f_{2}, \ldots, f_{n}$ schrumpfende Ähnlichkeitsabbildungen mit Schrumpfungsfaktoren $L_{1}, L_{2}, \ldots, L_{n}<1$, gelte $\bigcup_{i=1}^{n} f_{i}(A)=A$ und die Bilder $\left(f_{i}(A)\right)_{i=1}^{n}$ seien (fast) paarweise disjunkt.
- Dann erüllt die Hausdorff-Besicovitch $\operatorname{Dimension} \operatorname{dim}_{H}(A)$ der Menge A folgende Gleichung:

$$
\sum_{i=1}^{n} L_{i}^{\operatorname{dim}_{H}(A)}=1
$$

- Bsp: Im Falle des Sierpinski Dreiecks gilt $n=3$ sowie $L_{1}=L_{2}=L_{3}=\frac{1}{2}$; wir müssen also folgende Gleichung nach s auflösen:

$$
\left(\frac{1}{2}\right)^{s}+\left(\frac{1}{2}\right)^{s}+\left(\frac{1}{2}\right)^{s}=1
$$

und erhalten das schon bekannte Resultat $\frac{\log 3}{\log 2}$.

Übungen:

- Berechnen Sie die Hausdorff Dimension der vier vorhin in der Übung betrachteten Fraktale.
- Ausblick: Was passiert, wenn man die Schrumpfungen leicht ändert?
- Film: Link Transforming dragons

Math2School ist eine Initiative des FB Mathematik. Ein(r) Professor(in) und ein(e) Student(in) besuchen Ihre Schule und stellen in einer oder zwei Schulstunden das Studium der Mathematik und die Berufsaussichten als Mathematiker vor.

- Gibt es in der Mathematik überhaupt noch Neues zu erforschen?
- Jobperspektiven für Mathematiker (und data scientists); wo arbeiten Mathematiker?
- Konkrete mathematische Problemstellungen aus der Privatwirtschaft.
- Was erwartet Studierende im Mathematikstudium, welche Voraussetzungen sollten sie mitbringen.
- Kontaktperson: Ass.-Prof. Dr. Simon Blatt, siehe http://m2s.sbg.ac.at/

