Quantifying asymmetric dependence with the R-package qad

Wolfgang Trutschnig

(joint work with Florian Griessenberger ${ }^{1}$ and Robert R. Junker ${ }^{2}$)

Symposium: Ecology - Geomorphology — Statistics
Multidiversity in environmental successions - interdisciplinary views on the emergence of ecological complexity

Salzburg, March 28-29, 2019

[^0]
How it started:

- 2015/16: First collaboration of the statistics group (Bathke \& Trutschnig) with Robert's group on dynamic range boxes.
- R.R. Junker, J. Kuppler, A.C. Bathke, M.L. Schreyer, W. Trutschnig: Dynamic range boxes - A robust non-parametric approach to quantify size and overlap of n -dimensional hypervolumes, Methods in Ecology and Evolution 7(12), 1503-1513 (2016)
- After the paper was published Robert asked me: Can you sketch a problem you are working on in dependence modeling in a way comprehensible for non-mathematicians?
- Answer:
- I try to quantify how much influence one variable/feature X has on another variable/feature Y and vice versa.
- Main objective is to find a nonparametric, model-independent and scale-invariant version of the famous coefficient of determination R^{2}
- A picture helps...

Figure: Bivariate sample $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ of size $n=50$ from the model $Y=\frac{x^{2}}{4}+\varepsilon$

- Which variable is easier to predict given the value of the other one?
- What would you say, and why?
- But do strongly asymmetric dependence structures really exist in nature?
- Examples:
- Average speed vs. fuel consumption (measurements)
- Wave length vs. reflection of light, etc.

Figure: Wave length vs. reflection of light (measurements) for a purple flower

- Taking asymmetry in dependence for granted:
- How can dependence be quantified?
- How can asymmetry in dependence be quantified?
- All statistics courses mention 'independence': Two random variables X and Y are called independent, if X has no influence on Y AND vice versa.
- Toy example: X...result of rolling a dice, $Y \ldots$...esult of rolling the dice a second time.
- If we know the outcome of X, does it help to predict Y ?
- The probabilities of Y remain unchanged - we do not gain any knowledge about Y if we know X and vice versa.
- In other words: Knowing X does not reduce the uncertainty of Y and vice versa.

Figure: Bivariate sample $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ of size $n=50$ from the model $Y=\frac{x^{2}}{4}+\varepsilon$

- Doesn't correlation quantify dependence?
- Why not work with Pearson, Spearman, or Kendall correlation?

Figure: Bivariate sample $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ of size $n=50$ from the model $Y=\frac{x^{2}}{4}+\varepsilon$

- For the sample we get the following: $r=-0.011, \rho=-0.098, \tau=-0.081$
- Even worse: We get the same values if we interchange X and $Y \ldots$

Consequences:

- Correlation does not quantify dependence (neither Pearson, nor Spearman, nor Kendall correlation quantifies dependence).
- Another approach is needed.

Wish list for such a quantification q :

- $q(X, Y)$ can be calculated for all continuous random variables X and Y (without having at hand an underlying model)
- $q(X, Y) \in[0,1]$ (normalization)
- $q(X, Y)=0$ if and only if X and Y are independent (independence)
- $q(X, Y)=1$ if and only if Y is a function of X (complete dependence, full predictability)
- It may happen that $q(X, Y) \neq q(Y, X)$ (asymmetry)
- Additionally: Scale changes should not affect q (scale-invariance)
- Robert had a big smile on his face when I told him that such a measure q existed and that I had developed and published it in 2011.
- He saw the potential of q not only for ecology (key species, invasive species, networks, etc.) but for data analytics in general.
- The smile disappeared when I told him that it was still unknown how to estimate q based on samples and that I had not found a general, consistent estimator yet...
- ...and that a superstar in my field of research (=dependence modeling) had conjectured that no such estimator existed...
- ...sometimes even superstars are mistaken.
- We found such an estimator but it took a while.
- The estimator was developed and studied in Florian Griessenberger's master thesis (2018).
- Afterwards the estimator (a so-called empirical checkerboard copula) and additional tools were implemented in the R-package qad (available CRAN) \rightarrow see Florian's presentation of qad tomorrow at 14:40.

Structure for the rest of this talk:

- Sketch how the estimator works (no heavy mathematics, only the underlying ideas).
- Sketch how qad-based testing and forecasting works.
- Illustrate qad in terms of several examples and simulations.
- Please interrupt is something is unclear or if questions arise!

How the qad estimator is calculated
(S0) Suppose that $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ is a sample from (X, Y).
(S1) Calculate the normalized ranks of the sample; we get values of the form $\left(\frac{i}{n}, \frac{j}{n}\right)$ with $i, j \in\{1, \ldots, n\}$.
(S2) Calculate the so-called empirical copula \hat{E}_{n} and aggregate it to the empirical checkerboard copula \hat{C}_{n}.
(S3) Calculate how different the checkerboard distribution and the uniform distribution on the unit square (modelling independence) are ${ }^{1}$; i.e. calculate $\left.q_{n}(X, Y)=3 D_{1}\left(\hat{C}_{n}, \Pi\right)\right)$.

- It can be proved mathematically that $q_{n}(X, Y) \approx q(X, Y)$ for sufficiently large n (mathematically speaking: The estimator is strongly consistent).
- Let's have a look at the construction for our specific U-shaped sample.

[^1]

Figure: Bivariate sample $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ of size $n=50$ from the model $Y=\frac{x^{2}}{4}+\varepsilon$

Figure: Normalized ranks of the sample; notice the scale change.

Figure: Empirical copula \hat{E}_{n}; the density is uniform on each of the little squares

Figure: Empirical copula \hat{E}_{n} and the partition to which we aggregate

Figure: Empirical checkerboard copula \hat{C}_{n} and its density on each of the big squares. The higher the concentration of the mass in y-direction the higher the dependence of Y on X.

Figure: For the sample $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ qad yields $q_{n}(X, Y)=0.8$ and $q_{n}(Y, X)=0.43$.

Testing:

- For the considered sample qad yields $q_{n}(X, Y)=0.8$ and $q_{n}(Y, X)=0.43$.
- So the asymmetry in dependence a is $a=q_{n}(X, Y)-q_{n}(Y, X)=0.37$.
- When applying the qad-function in the qad R-package a permutation test for equal dependence in both directions can be executed (for syntax and function calls see Florian's talk).
- Basic idea of the implemented permutation test: Consider the doubled sample $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right),\left(y_{1}, x_{1}\right), \ldots,\left(y_{n}, x_{n}\right)$, randomly draw n observations from it, calculate the corresponding qad value and the corresponding asymmetry in dependence.
- Repeat for $R=1.000$ times and check how often the asymmetry is at least as big as the one of the original sample $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- The resulting p.value (based on 1.000 runs) for our sample fulfills $p<0.001$, i.e. the null for symmetric dependence is rejected.

Forecasting:

- The calculated empirical checkerboard can easily be used for forecasting and confidence intervals.
- Each vertical stripe corresponds to a conditional distribution and the mass of the squares is known \rightarrow forecasting is straightforward after transforming back the normalized ranks.
- Notice that the empirical checkerboard contains more info than a classical (quantile) regression.
- \rightarrow more information will be given in Florian's talk.
- All examples and simulations mentioned in the sequel are part of the following preprint:
- Robert R. Junker, Florian Griessenberger, Wolfgang Trutschnig: A scale-invariant measure for quantifying asymmetry in dependence and associations, submitted for publication
- The preprint is available on arXiv and can be downloaded from https://arxiv.org/abs/1902.00203
- The preprint contains a general, non-mathematical description of qad, a separate section with all the mathematics behind it, and R-Codes for the examples.

Examples

Global climate: temperature vs. precipitation

- Data: ${ }^{2}$ Bioclimatic variables for $n=1862$ locations homogeneously distributed over the global landmass.
- Many Bioclim variables are strongly dependent \rightarrow high qad values (no real surprise).
- More surprising: Many pairs were moderately asymmetric in dependence.
- In the graphic: Annual mean temperature vs. annual precipitation (logscale).
- qad yields $q(T, P)=0.61$ and $q(P, T)=0.54$.
- Therefore $a=0.08$ with a p. value of $p<0.001$.安

Examples

World Development Indicators: birth vs. death rate
B Data: World Development Indicators as provided by the World Bank (year \div 2015).

One of the pairs with significant asymmetry in dependence is birth vs. death rate.

In the graphic: birth vs. death rate, color according to GDP per capita (logscale).
qad yields $q(B, D)=0.42$ and $q(D, B)=0.22$.

- Therefore $a=0.20$ with a p.value of $p<0.001$.

Examples

a

(1)

Microbiomes: abundance of OTUs

- Data: Abundances of bacteria associated with surfaces of the plant Metrosideros polymorpha.
- We calculated the qad values for all pairs of $n=93$ operational taxonomic units (OTUs).
- We looked for key species, i.e. species which influence the abundance of other species but are less influenced by others.
- 7 OTUs were identified as key species.
- The 4 OTUs with the highest influence values were also identified in an experimental study as key players w.r.t. abundance of bacteria.
- qad goes beyond simple statistics and may produce ecologically meaningful outcomes.
- Whenever new estimators are developed statisticians test their performance.
- Basic idea is (strong) consistency: For sufficiently large samples the estimator should be close to the true value.
- Toy example: $\mathcal{N}(1,2)$, for large n we expect $\bar{X}_{n} \approx 1$.
- We proved strong consistency mathematically.
- Simulations illustrate the speed of convergence as well as the small sample performance.
- Numerous dependence structures (no matter if they may appear in nature or not) were considered.
- The next slides only show two extreme cases.

Figure: Sample of size 10.000 from the product copula Π describing independence.

Simulations

Figure: Boxplots summarizing the 1.000 obtained estimates $q_{n}(X, Y)$ (magenta) and $q_{n}(Y, X)$ (gray).
The dashed lines depict the true (=population) values $q(X, Y)$ and $q(Y, X)$.

Simulations

Figure: Sample of size 10.000 of a situation with $Y=f(X)$.

Simulations

Figure: Boxplots summarizing the 1.000 obtained estimates $q_{n}(X, Y)$ (magenta) and $q_{n}(Y, X)$ (gray).
The dashed lines depict the true (=population) values $q(X, Y)$ and $q(Y, X)$.

Wrap-up:

- Asymmetric dependence is a key feature in bivariate associations.
- All standard 'dependence' measures ignore asymmetry.
- qad seems to be the first scale-invariant, model-free measure of dependence that overcomes this problem.
- $q(X, Y)$ describes the information gained about Y by knowing X.
- In general we have $q(X, Y) \neq q(Y, X)$.
- Many real datasets underline the usefulness of qad. Additionally, consistency has be proved mathematically.
- Nevertheless: There is a lot of work to do for statisticians.

Future work:

- qad was developed for continuous data and not for count data (abundances, etc.).
- Nevertheless: It also produces good results for such data.
- To do: Study the mathematical properties of the estimator in the count data setting (\rightarrow part of Florian's PhD project).
- So far we can only quantify dependence of pairs - the interplay between two variables might have an influence on a third variable but none of the variables individually.
- To do: Extend qad to the general multivariate setting (\rightarrow part of Florian's PhD project).

[^0]: ${ }^{1}$ Department for Mathematics, University of Salzburg
 ${ }^{2}$ Department of Ecology and Evolution, University of Salzburg

[^1]: ${ }^{1}$ More precisely: the conditional distribution functions are compared with the distribution function of the uniform distribution on $[0,1]$.

