Quantifying And Estimating Asymmetric Dependence

Wolfgang Trutschnig ${ }^{1}$
(joint work with Florian Griessenberger ${ }^{1}$ and Robert R. Junker ${ }^{2}$)

10th International Workshop on Simulation and Statistics

Salzburg, 2019-09-02

[^0]

Figure: Bivariate sample of (X, Y) of size $n=50$

- Which variable is easier to predict given the value of the other one, and why?
- This talk is about one approach to estimate asymmetry for 2d samples.
- The following question arose in the context of an applied project (offer optimization in supermarkets and cannibalism effects) in 2010:
- Is there a non-parametric, scale-free version ζ of R^{2} that quantifies the dependence of a r.v. Y on a r.v. X and vice versa?
- Desired natural properties:
- $\zeta(X, Y) \in[0,1]$.
- $\zeta(X, Y)$ is scale-free.
- $\zeta(X, Y)=0$ iff $X \perp Y$.
- $\zeta(X, Y)=1$ if $Y=\varphi(X)$ for some measurable φ [a.k.a. Y is completely dependent on X].
- $\zeta(Y, X) \neq \zeta(X, Y)$ is possible.
- None of the standard 'dependence measures' I found in the literature 2010 fulfilled these properties.
- Schweitzer and Wolff's $\sigma(X, Y)$ can be arbitrarily small although Y is completely dependent on X, the same is true for Spearman's ρ and Kendall's τ.
- What to do?
- Let's concentrate on continuous random variables X, Y.
- Focus on the copula A underlying (X, Y) and work with conditional distributions of Y given X and vice versa.
- In other words: Work with the Markov kernel $K_{A}(x, E)$ of the copula A.
- If μ_{A} denotes the doubly stochastic measure corresponding to A then we have

$$
\mu_{A}(E \times F)=\int_{E} K_{A}(x, F) d \lambda(x)
$$

for all $E, F \in \mathcal{B}([0,1])$.

- A copula is called completely dependent, if there exists a λ-preserving transformation $h:[0,1] \rightarrow[0,1]$ such that $\mu_{A}(\Gamma(h))=1$ (or, equivalently, if all conditional distributions are degenerated).
- \mathcal{C}...family of all copulas; \mathcal{C}_{d} family of all completely dependent copulas.
- Markov kernels can be used to construct metrics stronger than the uniform one d_{∞}.

$$
\begin{aligned}
D_{\infty}(A, B) & :=\sup _{y \in[0,1]} \int_{[0,1]}\left|K_{A}(x,[0, y])-K_{B}(x,[0, y])\right| d \lambda(x) \\
D_{1}(A, B) & :=\int_{[0,1]} \int_{[0,1]}\left|K_{A}(x,[0, y])-K_{B}(x,[0, y])\right| d \lambda(x) d \lambda(y)
\end{aligned}
$$

- $D_{1}(A, B)$ is the expected L^{1}-distance of the conditional distribution functions.

Theorem (T., JMAA, 2011)

Suppose that A, A_{1}, A_{2}, \ldots are copulas. Then the following three conditions are equivalent:
(a) $\lim _{n \rightarrow \infty} D_{1}\left(A_{n}, A\right)=0$.
(b) $\lim _{n \rightarrow \infty} D_{\infty}\left(A_{n}, A\right)=0$.
(c) The corresponding Markov operators $T_{A_{n}}$ converge to T_{A} in the strong operator topology $L^{1}([0,1], \mathcal{B}([0,1]), \lambda)$.

Theorem (T., JMAA, 2011)

The metric space $\left(\mathcal{C}, D_{1}\right)$ is complete and separable. No closed ball $\bar{B}_{D_{1}}(A, r)$ with $A \in \mathcal{C}$ and $r>0$ is compact. The family \mathcal{C}_{d} is closed (but not compact).
Convergence w.r.t. D_{1} implies pointwise/uniform convergence but no vice versa.

Theorem (T., JMAA, 2011)

The following assertions hold for every $A \in \mathcal{C}$:

1. $D_{1}(A, \Pi) \leq 1 / 3$.
2. $D_{1}(A, \Pi)=1 / 3$ if and only if $A \in \mathcal{C}_{d}$.

- Define the dependence measure $\zeta_{1}: \mathcal{C} \rightarrow[0,1]$ by

$$
\zeta_{1}(A):=3 D_{1}(A, \Pi) .
$$

- $\zeta_{1}(A)=0$ if and only if $A=\Pi$ (independence)
- $\zeta_{1}(A)=1$ if and only if $A \in \mathcal{C}_{d}$ (complete dependence).

Example (Farlie-Gumbel-Morgenstern Familie)

- The FGM family $\left(G_{\theta}\right)_{\theta \in[-1,1]}$ is defined by

$$
G_{\theta}(x, y)=x y+\theta x y(1-x)(1-y)
$$

- G_{θ} is absolutely continuous and $K_{G_{\theta}}(\cdot, \cdot)$, given by

$$
K_{G_{\theta}}(x,[0, y]):=y+\theta y(1-2 x)(1-y) \quad \forall(x, y) \in[0,1]^{2},
$$

is the corresponding Markov kernel.

- $\left(G_{\theta}\right)_{\theta \in[-1,1]}$ is continuous in θ w.r.t. D_{1} and we have

$$
\zeta_{1}\left(G_{\theta}\right)=\frac{|\theta|}{4}
$$

for every $\theta \in[-1,1]$.

- The metric D_{1} has several other nice properties and has been extended to the multivariate setting in 2014 (Fernández Sánchez \& T., JTP, 2015).
- The dependence measure ζ_{1} is not straightforward to extend \rightarrow open work.
- 2017: Discussion with Robert Junker (professor for ecology in Salzburg) on ways to quantify the influence of one species on other ones.
- Check if a species is an influencer or is being influenced more by others.
- Natural idea: Try to estimate $\zeta_{1}(X, Y)=\zeta_{1}(A)$ based on samples of (X, Y).
- Plug-in the empirical copula \hat{E}_{n} and use $\zeta_{1}\left(\hat{E}_{n}\right)$ as estimator, done?!

Figure: Bivariate sample of (X, Y) of size $n=50$.

Figure: Normalized ranks of the sample.

Figure: Empirical copula \hat{E}_{n} (uniform density on each of the little squares).

- In our case we get $\zeta_{1}\left(\hat{E}_{n}\right) \sim 1$.
- \hat{E}_{n} almost looks like a shuffle...
- Substituting the filled square with little copies of the minimum copula M yields a completely dependent copula \hat{E}_{n}^{M} (a.k.a. empirical checkmin copula), so $\zeta\left(\hat{E}_{n}^{M}\right)=1$.
- The same is true for all empirical copulas:
- If \hat{E}_{n} is the empirical copula of a sample of (X, Y) and X, Y are continuous then

$$
\lim _{n \rightarrow \infty} \zeta_{1}\left(\hat{E}_{n}\right)=0[\mathbb{P}]
$$

- Long story short: The plug-in estimator does not work.
- Estimating conditional distributions is a difficult endeavor.
- D_{1} and ζ_{1} are based on conditional distributions...
- Possible way out: Aggregate/Smooth \hat{E}_{n}.

Figure: Density of the empirical checkerboard approximation $\mathfrak{C} \mathfrak{B}_{5}\left(\hat{E}_{n}\right)$ of \hat{E}_{n}. Plugging in $\mathfrak{C} \mathfrak{B}_{5}\left(\hat{E}_{n}\right)$ yields $\zeta_{1}\left(\mathfrak{C} \mathfrak{B}_{5}\left(\hat{E}_{n}\right)\right)=q_{n}(X, Y)=0.8$; Flipping X and Y yields $q_{n}(Y, X)=0.43$.

Definition

Suppose that $A \in \mathcal{C}, N \in \mathbb{N}$. The absolute continuous copula $\mathfrak{C B}_{N}(A) \in \mathcal{C B}_{N}$ defined by

$$
\mathfrak{C} \mathfrak{B}_{N}(A)(x, y):=\int_{0}^{x} \int_{0}^{y} N^{2} \sum_{i, j=1}^{N} \mu_{A}\left(R_{i j}^{N}\right) \mathbf{1}_{R_{i j}^{N}}(s, t) d \lambda(t) d \lambda(s)
$$

is called N-checkerboard approximation of $A . N$ is called the resolution of $\mathfrak{C} \mathfrak{B}_{N}(A)$.

Theorem (Griessenberger \& Junker \& T., submitted, 2019; arXiv)
Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ be a sample of (X, Y) with copula A. Furthermore consider $N(n):=\left\lfloor n^{s}\right\rfloor$ where s fulfills $0<s<\frac{1}{2}$. Then

$$
\lim _{n \rightarrow \infty} D_{1}\left(\mathfrak{C B}_{N(n)}\left(\hat{E}_{n}\right), A\right)=0[\mathbb{P}] .
$$

Theorem (Griessenberger \& Junker \& T., submitted, 2019; arXiv) Same setting as above. Then $\zeta_{1}\left(\mathfrak{C} \mathfrak{B}_{N(n)}\left(\hat{E}_{n}\right)\right)$ is a strongly consistent estimator of $\zeta_{1}(A)$.

- R-package qad ${ }^{1}$ (available on CRAN) calculates the empirical checkerboard copula and the estimator $\zeta_{1}\left(\mathfrak{C B}_{N(n)}\left(\hat{E}_{n}\right)\right)$.
- Next talk: Florian Griessenberger will show what the package can be used for and how our dependence estimator performs in comparison to various other ones.

[^1]

Figure: Sample of size 10.000 from the product copula Π describing independence.

Figure: Boxplots summarizing the 1.000 obtained estimates for $\zeta_{1}(X, Y)$ (magenta) and $\hat{\zeta}_{1}(Y, X)$ (gray). The dashed lines depict the true quantities $\zeta_{1}(X, Y)$ and $\zeta_{1}(Y, X)$.

Figure: Sample of size 10.000 of a completely dependent copula $A_{h_{a}}$ for $h_{a}=a x(\bmod 1)$ and $a=5$. Highly asymmetric setting!

Figure: Boxplots summarizing the 1.000 obtained estimates for $\zeta_{1}(X, Y)$ (magenta) and $\hat{\zeta_{1}}(Y, X)$ (gray) for the case $a=5$.

Wrap-up:

- Dependence and asymmetry in dependence is a key feature in bivariate associations.
- All standard 'dependence measures' ignore asymmetry.
- qad seems to be the first scale-invariant, model-free measure of dependence that overcomes this problem.
- $q(X, Y)$ can be interpreted as the information gained about Y by knowing X.
- In general we have $q(X, Y) \neq q(Y, X)$.
- Many real datasets underline the usefulness of qad. Additionally, consistency has be proved mathematically.
- Nevertheless: There is a lot of work to be done: Extension to the discrete setting, extension to the multivariate setting, etc. (\rightarrow part of Florian's PhD project).

[^0]: ${ }^{1}$ Department for Mathematics, University of Salzburg
 ${ }^{2}$ Department of Ecology and Evolution, University of Salzburg

[^1]: ${ }^{1}$ short for 'quantification of asymmetric dependence'

