Wolfgang Trutschnig¹

(joint work with Florian Griessenberger¹ and Robert R. Junker²)

10th International Workshop on Simulation and Statistics

Salzburg, 2019-09-02

¹Department for Mathematics, University of Salzburg

²Department of Ecology and Evolution, University of Salzburg

Figure: Bivariate sample of (X, Y) of size n = 50

- ▶ Which variable is easier to predict given the value of the other one, and why?
- ▶ This talk is about one approach to estimate asymmetry for 2d samples.

- The following question arose in the context of an applied project (offer optimization in supermarkets and cannibalism effects) in 2010:
- Is there a non-parametric, scale-free version ζ of R² that quantifies the dependence of a r.v. Y on a r.v. X and vice versa?
- Desired natural properties:
 - ▶ $\zeta(X, Y) \in [0, 1]$.
 - $ightharpoonup \zeta(X,Y)$ is scale-free.
 - $\zeta(X,Y) = 0 \text{ iff } X \perp Y.$
 - $\zeta(X,Y)=1$ if $Y=\varphi(X)$ for some measurable φ [a.k.a. Y is completely dependent on X].
 - $ightharpoonup \zeta(Y,X) \neq \zeta(X,Y)$ is possible.
- None of the standard 'dependence measures' I found in the literature 2010 fulfilled these properties.
- Schweitzer and Wolff's $\sigma(X,Y)$ can be arbitrarily small although Y is completely dependent on X, the same is true for Spearman's ρ and Kendall's τ .
- ► What to do?

- Let's concentrate on continuous random variables X, Y.
- Focus on the copula A underlying (X, Y) and work with conditional distributions of Y given X and vice versa.
- In other words: Work with the Markov kernel $K_A(x, E)$ of the copula A.
- If μ_A denotes the doubly stochastic measure corresponding to A then we have

$$\mu_A(E \times F) = \int_E K_A(x, F) d\lambda(x)$$

for all $E,F\in\mathcal{B}([0,1])$

- A copula is called completely dependent, if there exists a λ -preserving transformation $h:[0,1]\to [0,1]$ such that $\mu_A(\Gamma(h))=1$ (or, equivalently, if all conditional distributions are degenerated).
- \triangleright C...family of all copulas; C_d family of all completely dependent copulas.
- Markov kernels can be used to construct metrics stronger than the uniform one d_{∞} .

$$D_{\infty}(A,B) := \sup_{y \in [0,1]} \int_{[0,1]} \left| K_A(x,[0,y]) - K_B(x,[0,y]) \right| d\lambda(x)$$

$$D_1(A,B) := \int_{[0,1]} \int_{[0,1]} \left| K_A(x,[0,y]) - K_B(x,[0,y]) \right| d\lambda(x) d\lambda(y)$$

 \triangleright $D_1(A,B)$ is the expected L^1 -distance of the conditional distribution functions.

Theorem (T., JMAA, 2011)

Suppose that A, A_1, A_2, \ldots are copulas. Then the following three conditions are equivalent:

- (a) $\lim_{n\to\infty} D_1(A_n,A)=0$.
- (b) $\lim_{n\to\infty} D_{\infty}(A_n, A) = 0$.
- (c) The corresponding Markov operators T_{A_n} converge to T_A in the strong operator topology $L^1([0,1],\mathcal{B}([0,1]),\lambda)$.

Theorem (T., JMAA, 2011)

The metric space (C, D_1) is complete and separable. No closed ball $\overline{B}_{D_1}(A, r)$ with $A \in \mathcal{C}$ and r > 0 is compact. The family \mathcal{C}_d is closed (but not compact). Convergence w.r.t. D₁ implies pointwise/uniform convergence but no vice versa.

Theorem (T., JMAA, 2011)

The following assertions hold for every $A \in C$:

- 1. $D_1(A,\Pi) < 1/3$.
- 2. $D_1(A,\Pi) = 1/3$ if and only if $A \in \mathcal{C}_d$.
- Define the dependence measure $\zeta_1: \mathcal{C} \to [0,1]$ by

$$\zeta_1(A) := 3 D_1(A, \Pi).$$

- $ightharpoonup \zeta_1(A) = 0$ if and only if $A = \Pi$ (independence)
- $\zeta_1(A) = 1$ if and only if $A \in \mathcal{C}_d$ (complete dependence).

▶ The FGM family $(G_{\theta})_{\theta \in [-1,1]}$ is defined by

$$G_{\theta}(x,y) = xy + \theta xy(1-x)(1-y).$$

• G_{θ} is absolutely continuous and $K_{G_{\theta}}(\cdot, \cdot)$, given by

$$K_{G_{\theta}}(x,[0,y]) := y + \theta y(1-2x)(1-y) \quad \forall (x,y) \in [0,1]^2,$$

is the corresponding Markov kernel.

 $(G_{\theta})_{\theta \in [-1,1]}$ is continuous in θ w.r.t. D_1 and we have

$$\zeta_1(G_{\theta}) = \frac{|\theta|}{4}$$

for every $\theta \in [-1, 1]$.

- \triangleright The metric D_1 has several other nice properties and has been extended to the multivariate setting in 2014 (Fernández Sánchez & T., JTP, 2015).
- ▶ The dependence measure ζ_1 is not straightforward to extend \rightarrow open work.
- 2017: Discussion with Robert Junker (professor for ecology in Salzburg) on ways to quantify the influence of one species on other ones.
- Check if a species is an influencer or is being influenced more by others.
- Natural idea: Try to estimate $\zeta_1(X,Y) = \zeta_1(A)$ based on samples of (X,Y).
- Plug-in the empirical copula \hat{E}_n and use $\zeta_1(\hat{E}_n)$ as estimator, done?!

Figure: Bivariate sample of (X, Y) of size n = 50.

Figure: Normalized ranks of the sample.

Figure: Empirical copula \hat{E}_n (uniform density on each of the little squares).

- In our case we get $\zeta_1(\hat{E}_n) \sim 1$.
- $ightharpoonup \hat{E}_n$ almost looks like a shuffle...
- Substituting the filled square with little copies of the minimum copula M yields a completely dependent copula \hat{E}_n^M (a.k.a. empirical checkmin copula), so $\zeta(\hat{E}_n^M) = 1$.
- ▶ The same is true for all empirical copulas:
- ▶ If \hat{E}_n is the empirical copula of a sample of (X, Y) and X, Y are continuous then

$$\lim_{n\to\infty}\zeta_1(\hat{E}_n)=0 \ [\mathbb{P}].$$

- Long story short: The plug-in estimator does not work.
- Estimating conditional distributions is a difficult endeavor.
- ▶ D_1 and ζ_1 are based on conditional distributions...
- Possible way out: Aggregate/Smooth \hat{E}_n .

Figure: Density of the empirical checkerboard approximation $\mathfrak{CB}_5(\hat{E}_n)$ of \hat{E}_n . Plugging in $\mathfrak{CB}_5(\hat{E}_n)$ yields $\zeta_1(\mathfrak{CB}_5(\hat{E}_n)) = q_n(X,Y) = 0.8$; Flipping X and Y yields $q_n(Y, X) = 0.43.$

Definition

Motivation

Suppose that $A \in \mathcal{C}$, $N \in \mathbb{N}$. The absolute continuous copula $\mathfrak{CB}_N(A) \in \mathcal{CB}_N$ defined by

$$\mathfrak{CB}_N(A)(x,y) := \int_0^x \int_0^y N^2 \sum_{i,j=1}^N \mu_A(R_{ij}^N) \mathbf{1}_{R_{ij}^N}(s,t) \, d\lambda(t) d\lambda(s)$$

is called N-checkerboard approximation of A. N is called the resolution of $\mathfrak{CB}_N(A)$.

Let $(x_1, y_1), \ldots, (x_n, y_n)$ be a sample of (X, Y) with copula A. Furthermore consider $N(n) := \lfloor n^s \rfloor$ where s fulfills $0 < s < \frac{1}{2}$. Then

$$\lim_{n\to\infty} D_1\left(\mathfrak{CB}_{N(n)}(\hat{E}_n),A\right)=0 \ [\mathbb{P}].$$

Theorem (Griessenberger & Junker & T., submitted, 2019; arXiv)

Same setting as above. Then $\zeta_1(\mathfrak{CB}_{N(n)}(\hat{E}_n))$ is a strongly consistent estimator of $\zeta_1(A)$.

- ▶ R-package qad^1 (available on CRAN) calculates the empirical checkerboard copula and the estimator $\zeta_1(\mathfrak{CB}_{N(n)}(\hat{\mathcal{E}}_n))$.
- Next talk: Florian Griessenberger will show what the package can be used for and how our dependence estimator performs in comparison to various other ones.

¹short for 'quantification of asymmetric dependence'

Figure: Sample of size 10.000 from the product copula Π describing independence.

Simulations - extreme cases

Figure: Boxplots summarizing the 1.000 obtained estimates for $\zeta_1(X,Y)$ (magenta) and $\hat{\zeta_1}(Y,X)$ (gray). The dashed lines depict the true quantities $\zeta_1(X,Y)$ and $\zeta_1(Y,X)$.

Simulations - extreme cases

Figure: Sample of size 10.000 of a completely dependent copula A_{h_a} for $h_a = ax (mod 1)$ and a = 5. Highly asymmetric setting!

Simulations - extreme cases

Figure: Boxplots summarizing the 1.000 obtained estimates for $\zeta_1(X,Y)$ (magenta) and $\hat{\zeta}_1(Y,X)$ (gray) for the case a=5.

Wrap-up:

Motivation

- Dependence and asymmetry in dependence is a key feature in bivariate associations.
- ▶ All standard 'dependence measures' ignore asymmetry.
- qad seems to be the first scale-invariant, model-free measure of dependence that overcomes this problem.

Estimating ζ_1

- ightharpoonup q(X,Y) can be interpreted as the information gained about Y by knowing X.
- In general we have $q(X, Y) \neq q(Y, X)$.
- Many real datasets underline the usefulness of qad. Additionally, consistency has be proved mathematically.
- Nevertheless: There is a lot of work to be done: Extension to the discrete setting, extension to the multivariate setting, etc. (→ part of Florian's PhD project).