

On the interrelation between Kendall's τ and Spearman's ρ

Wolfgang Trutschnig
Department for Mathematics
University Salzburg
www.trutschnig.net

International Statistics Festival Ulm
Ulm, 2018-09-18

Introductory remarks \& notation:

- Suppose that $X, Y \sim \mathcal{U}(0,1)$. Then the distribution function A of (X, Y), restricted to $[0,1]^{2}$, is called a (two-dimensional) copula.
- A probability measure μ on $\mathcal{B}\left([0,1]^{2}\right)$ is called doubly stochastic if we have

$$
\mu(E \times[0,1])=\mu([0,1] \times E)=\lambda(E)
$$

for all $E \in \mathcal{B}([0,1])$.

- Copulas are distribution functions (restricted to $[0,1]^{2}$) of doubly stochastic measures.
- \mathcal{C} denotes the family of all (two-dimensional) copulas, $\mathcal{P}_{\mathcal{C}}$ the family of all doubly stochastic measures $\left(A \in \mathcal{C} \longleftrightarrow \mu_{A} \in \mathcal{P}_{\mathcal{C}}\right)$.
- Examples: $M(x, y)=\min \{x, y\}, \Pi(x, y)=x y, W(x, y)=\max \{x+y-1,0\}$ are copulas.
- In 1951 Fréchet studied the question, how the family $\mathcal{F}_{F, G}$ of ALL joint distribution functions H that have F and G as marginals looks like.

Theorem (Two-dimensional version of Sklar's theorem, 1959)
Suppose that X and Y are random variables with continuous distribution functions F and G, and let H denote their joint distribution function. Then there exists a unique copula A such that

$$
\begin{equation*}
H(x, y)=A(F(x), G(y)) \tag{1}
\end{equation*}
$$

holds for all $x, y \in \mathbb{R}$. In other words: Copulas are the link between multivariate distribution functions and their marginals.

- If T and S are strictly increasing transformations on $\operatorname{Supp}\left(\mathbb{P}^{X}\right)$ and $\operatorname{Supp}\left(\mathbb{P}^{Y}\right)$ resp., then A is also the copula of $(T \circ X, S \circ Y)$.
- Consequence: All scale-invariant dependence between X and Y is captured by the copula A underlying (X, Y).
- Copula pop-up naturally in various problems.
- Consider the following situation:
- $X \sim F$ and $Y \sim G$ describe default times of firms (or obligors) or lifetimes of electronic components; we do not know the distribution of (X, Y).
- In risk management one key quantity is the probability of a joint default, i.e. $\mathbb{P}(X=Y)$.
- As before, let $\mathcal{F}_{F, G}$ denote the Fréchet class of F, G, i.e. the class of all two-dimensional d.f. H having F and G as marginals.
- We want to know the worst-case-scenario, i.e. the quantity

$$
\begin{equation*}
\sup _{H \in \mathcal{F}_{F, G}} \mu_{H}(\Gamma(i d)) . \tag{2}
\end{equation*}
$$

- Setting $T=G \circ F^{-}$eq. (2) simplifies to

$$
\begin{equation*}
\sup _{H \in \mathcal{F}_{F, G}} \mu_{H}(\Gamma(i d))=\sup _{A \in \mathcal{C}} \mu_{A}(\Gamma(T))=: \bar{w}_{T} . \tag{3}
\end{equation*}
$$

- The following result can be shown (directly or via optimal transport).

Theorem (Mroz, T., Fernández-Sánchez, ?)
Suppose that $T:[0,1] \rightarrow[0,1]$ is non-decreasing. Then there exists a copula A such that

$$
\begin{equation*}
\bar{w}_{T}=\mu_{A}(\Gamma(T))=\int_{[0,1]} \min \left\{T^{\prime}(x), 1\right\} d \lambda(x) \tag{4}
\end{equation*}
$$

- For an arbitrary, measurable $T:[0,1] \rightarrow[0,1]$ we get the same formula with T^{\prime} replaced by F_{T}^{\prime} (the derivative of the distribution function F_{T}^{\prime} of T).
- The two most important concordance measures - Kendall's τ and Spearman's ρ - only depend on the underlying copula.
- As before: $X \sim F, Y \sim G$.
- Kendall's τ of (X, Y) is defined by

$$
\tau(X, Y)=\mathbb{P}\left(\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right)-\mathbb{P}\left(\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)<0\right)
$$

whereby $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right)$ are samples from (X, Y).

- Spearman's ρ is the Pearson correlation coefficient of the random variables $U:=F \circ X$ and $V:=G \circ Y$, i.e.

$$
\rho(X, Y)=12\left(\mathbb{E}(U V)-\frac{1}{4}\right)
$$

- Then we have

$$
\tau(X, Y)=4 \int_{[0,1]^{2}} A d \mu_{A}-1, \quad \rho(X, Y)=12 \int_{[0,1]^{2}} A d \lambda_{2}-3
$$

Figure: Classical τ - ρ-region Ω_{0} determined by the inequalities by Daniels and Durbin \& Stuart.

- Known since the 1950s:
- Daniels' inequality (JRSS-B, 1950):

$$
|3 \tau-2 \rho| \leq 1
$$

- Durbin \& Stuart's inequality (JRSS-B, 1951):

$$
\frac{(1+\tau)^{2}}{2}-1 \leq \rho \leq 1-\frac{(1-\tau)^{2}}{2}
$$

- The inequalities determine the classical $\tau-\rho$ region Ω_{0}.
- Ω_{0} is convex and compact.

Figure: The region $\Omega_{0}, \pm p_{n}$ in red, where $p_{n}:=\left(-1+\frac{2}{n},-1+\frac{2}{n^{2}}\right), n \geq 2$.

Definition

Shuffle of $M A \in \mathcal{C}$ is called shuffle of M if there exists a λ-preserving, piecewise linear function $h:[0,1] \rightarrow[0,1]$ with slope ± 1 such that the mass of A is concentrated on the graph of h. A shuffle is called straight is all segments have slope $+1 . \mathcal{C}_{\mathcal{S}^{+}}$will denote the family of all straight shuffles.

- The segments do not necessarily have the same length.
- Each straight shuffle can be expressed in terms of a permutation $\pi \in \sigma_{n}$ and an element $u \in \Delta_{n}$ ($\Delta_{n} \ldots n$-dim unit simplex).

Main objective (2014): Try to determine the exact τ - ρ-region

$$
\begin{align*}
\Omega & =\{(\tau(X, Y), \rho(X, Y)): X, Y \text { continuous r.v. }\} \\
& =\{(\tau(A), \rho(A)): A \in \mathcal{C}\} \tag{6}
\end{align*}
$$

- Do we have $\Omega=\Omega_{0}$?
- Determine which distributions yield points on the boundary of Ω.
- Simple idea: Work with straight shuffles since $\mathcal{C}_{\mathcal{S}^{+}}$is dense in ($\mathcal{C}, \boldsymbol{d}_{\infty}$) and τ, ρ are continuous w.r.t. d_{∞}
- We studied the classical proofs and more recent ones, and tried to improve them \rightarrow no success.
- We ran numerous simulations (straight shuffles) \rightarrow no examples at which the parabolic inequality is sharp other than $\pm p_{n}$.
- Points closest to the boundary were all of the from of prototypes: ' $n-1$ stripes of equal length and one shorter stripe in decreasing order'.
- ...is that it?

Figure: The region $\Omega_{0}, \pm p_{n}$ in red, where $p_{n}:=\left(-1+\frac{2}{n},-1+\frac{2}{n^{2}}\right), n \geq 2$.

- Define $\Phi_{n}:\left[-1+\frac{2}{n},-1+\frac{2}{n-1}\right] \rightarrow[-1,1]$:

$$
\begin{equation*}
\Phi_{n}(x)=-1-\frac{4}{n^{2}}+\frac{3}{n}+\frac{3 x}{n}-\frac{n-2}{\sqrt{2} n^{2} \sqrt{n-1}}(n-2+n x)^{3 / 2} \tag{7}
\end{equation*}
$$

- Combine the functions Φ_{n} to one function Φ

$$
\Phi(x)= \begin{cases}-1 & \text { if } x=-1 \tag{8}\\ \Phi_{n}(x) & \text { if } x \in\left[-1+\frac{2}{n},-1+\frac{2}{n-1}\right] \text { for some } n \geq 2\end{cases}
$$

- Key step: Prove

$$
\begin{equation*}
\Omega \subseteq\left\{(x, y) \in[-1,1]^{2}: \Phi(x) \leq y \leq-\Phi(-x)\right\}=: \Omega_{\Phi} \tag{9}
\end{equation*}
$$

via induction on the number of stripes.

- Use a homotopy argument to show $\Omega=\Omega_{\Phi}$.

Figure: The curves $\gamma_{s}(t)=H(s, t)$ for H being the homotopy shrinking $\partial \Omega$ into (1, 1).
Theorem (Schreyer, Paulin, T., JRSS-B, 2017)
The exact τ - ρ-region Ω fulfills

$$
\Omega=\left\{(x, y) \in[-1,1]^{2}: \Phi(x) \leq y \leq-\Phi(-x)\right\}
$$

What is new

τ vs. ρ

- Durbin \& Stuart's inequality is not sharp outside the points $\pm p_{n}$.
- Ω is not convex.
- For every point $(x, y) \in \Omega$ there is a shuffle A of M such that we have $(\tau(A), \rho(A))=(x, y)$.
- In other words: For each $(x, y) \in \Omega$ there exist (mutually) completely dependent random variables X, Y with $(\tau(X, Y), \rho(X, Y))=(x, y)$.
- Complete dependence everywhere in Ω.

Extreme-Value Copulas

- Red: boundary of Ω
- Blue: Hutchinson-Lai inequ.

$$
\begin{aligned}
& -1+\sqrt{1+3 \tau\left(A_{a}\right)} \leq \rho\left(A_{a}\right) \leq \\
& \min \left\{\frac{3 \tau\left(A_{a}\right)}{2}, 2 \tau\left(A_{a}\right)-\tau\left(A_{a}\right)^{2}\right\}
\end{aligned}
$$

- Gray: conjectured exact τ - ρ-region for EVC

Conjectured sharp inequalities for EVCs:

$$
\frac{3 \tau\left(A_{a}\right)}{2+\tau\left(A_{a}\right)} \leq \rho\left(A_{a}\right) \leq \frac{3 \tau\left(A_{a}\right)}{2+\tau\left(A_{a}\right)^{3}}-\frac{1}{3}\left(1-\tau\left(A_{a}\right)\right)^{2} \tau\left(A_{a}\right)^{4}
$$

Archimedean Copulas

- Red: boundary of Ω
- Gray: conjectured exact τ - ρ-region for Arch. Copulas
- Upper boundary coincides wit the one of Ω

Conjectured lower bound:

$$
\rho \geq \begin{cases}\frac{7 \tau-2 \tau^{3}}{5}, & \text { if } \tau \in[0,1] \\ \frac{31 \tau-11 \tau^{3}}{20}, & \text { if } \tau \in[-1,0]\end{cases}
$$

