
Copulas τ versus ρ in general τ versus ρ in subclasses

On the interrelation between Kendall’s τ and Spearman’s ρ

Wolfgang Trutschnig
Department for Mathematics

University Salzburg
www.trutschnig.net

International Statistics Festival Ulm
Ulm, 2018-09-18

Wolfgang Trutschnig
τ vs. ρ

http://www.trutschnig.net


Copulas τ versus ρ in general τ versus ρ in subclasses

Why copulas are important

Introductory remarks & notation:

I Suppose that X ,Y ∼ U(0, 1). Then the distribution function A of (X ,Y ),
restricted to [0, 1]2, is called a (two-dimensional) copula.

I A probability measure µ on B([0, 1]2) is called doubly stochastic if we have

µ(E × [0, 1]) = µ([0, 1]× E) = λ(E)

for all E ∈ B([0, 1]).

I Copulas are distribution functions (restricted to [0, 1]2) of doubly stochastic
measures.

I C denotes the family of all (two-dimensional) copulas, PC the family of all
doubly stochastic measures (A ∈ C ←→ µA ∈ PC ).

I Examples: M(x , y) = min{x , y},Π(x , y) = xy ,W (x , y) = max{x + y − 1, 0}
are copulas.
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Why copulas are important

I In 1951 Fréchet studied the question, how the family FF ,G of ALL joint
distribution functions H that have F and G as marginals looks like.

Theorem (Two-dimensional version of Sklar’s theorem, 1959)
Suppose that X and Y are random variables with continuous distribution functions
F and G, and let H denote their joint distribution function. Then there exists a
unique copula A such that

H(x , y) = A
(

F (x),G(y)
)

(1)

holds for all x , y ∈ R. In other words: Copulas are the link between multivariate
distribution functions and their marginals.

I If T and S are strictly increasing transformations on Supp(PX ) and Supp(PY )
resp., then A is also the copula of (T ◦ X ,S ◦ Y ).

I Consequence: All scale-invariant dependence between X and Y is captured by
the copula A underlying (X ,Y ).

I Copula pop-up naturally in various problems.
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Two examples where copulas naturally pop-up

I Consider the following situation:

I X ∼ F and Y ∼ G describe default times of firms (or obligors) or lifetimes of
electronic components; we do not know the distribution of (X ,Y ).

I In risk management one key quantity is the probability of a joint default, i.e.
P(X = Y ).

I As before, let FF ,G denote the Fréchet class of F ,G , i.e. the class of all
two-dimensional d.f. H having F and G as marginals.

I We want to know the worst-case-scenario, i.e. the quantity

sup
H∈FF,G

µH (Γ(id)). (2)

I Setting T = G ◦ F− eq. (2) simplifies to

sup
H∈FF,G

µH (Γ(id)) = sup
A∈C

µA(Γ(T )) =: wT . (3)
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Two examples where copulas naturally pop-up

I The following result can be shown (directly or via optimal transport).

Theorem (Mroz, T., Fernández-Sánchez, ?)
Suppose that T : [0, 1]→ [0, 1] is non-decreasing. Then there exists a copula A
such that

wT = µA(Γ(T )) =
∫

[0,1]
min
{

T ′(x), 1
}

dλ(x). (4)

I For an arbitrary, measurable T : [0, 1]→ [0, 1] we get the same formula with
T ′ replaced by F ′T (the derivative of the distribution function F ′T of T ).
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Two examples where copulas naturally pop-up

I The two most important concordance measures - Kendall’s τ and Spearman’s
ρ - only depend on the underlying copula.

I As before: X ∼ F ,Y ∼ G .

I Kendall’s τ of (X ,Y ) is defined by

τ(X ,Y ) = P
(

(X1 − X2)(Y1 − Y2) > 0)− P
(

(X1 − X2)(Y1 − Y2) < 0
)
,

whereby (X1,Y1), (X2,Y2) are samples from (X ,Y ).

I Spearman’s ρ is the Pearson correlation coefficient of the random variables
U := F ◦ X and V := G ◦ Y , i.e.

ρ(X ,Y ) = 12
(
E(UV )− 1

4

)
.

I Then we have

τ(X ,Y ) = 4
∫

[0,1]2

AdµA − 1, ρ(X ,Y ) = 12
∫

[0,1]2

Adλ2 − 3 (5)
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What was known
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Figure: Classical τ -ρ-region Ω0
determined by the inequalities by
Daniels and Durbin & Stuart.

I Known since the 1950s:

I Daniels’ inequality (JRSS-B,
1950):

|3τ − 2ρ| ≤ 1

I Durbin & Stuart’s inequality
(JRSS-B, 1951):

(1 + τ)2

2 −1 ≤ ρ ≤ 1− (1− τ)2

2

I The inequalities determine the
classical τ -ρ region Ω0.

I Ω0 is convex and compact.
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What was known
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Figure: The region Ω0, ±pn in red, where pn := (−1 + 2
n ,−1 + 2

n2 ), n ≥ 2.
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What was known

Definition
Shuffle of M A ∈ C is called shuffle of M if there exists a λ-preserving, piecewise
linear function h : [0, 1]→ [0, 1] with slope ±1 such that the mass of A is
concentrated on the graph of h. A shuffle is called straight is all segments have
slope +1. CS+ will denote the family of all straight shuffles.

I The segments do not necessarily have the same length.
I Each straight shuffle can be expressed in terms of a permutation π ∈ σn and

an element u ∈ ∆n (∆n...n-dim unit simplex).

0 1
0

1
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What is new

Main objective (2014): Try to determine the exact τ -ρ-region

Ω =
{

(τ(X ,Y ), ρ(X ,Y )) : X ,Y continuous r.v.
}

=
{

(τ(A), ρ(A)) : A ∈ C
}

(6)

I Do we have Ω = Ω0?

I Determine which distributions yield points on the boundary of Ω.

I Simple idea: Work with straight shuffles since CS+ is dense in (C, d∞) and τ, ρ
are continuous w.r.t. d∞

I We studied the classical proofs and more recent ones, and tried to improve
them → no success.

I We ran numerous simulations (straight shuffles) → no examples at which the
parabolic inequality is sharp other than ±pn.

I Points closest to the boundary were all of the from of prototypes: ’n − 1
stripes of equal length and one shorter stripe in decreasing order’.

I ...is that it?
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What is new
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Figure: The region Ω0, ±pn in red, where pn := (−1 + 2
n ,−1 + 2

n2 ), n ≥ 2.

Wolfgang Trutschnig
τ vs. ρ



Copulas τ versus ρ in general τ versus ρ in subclasses

What is new

I Define Φn : [−1 + 2
n ,−1 + 2

n−1 ]→ [−1, 1]:

Φn(x) = −1−
4
n2 +

3
n

+
3x
n
−

n − 2
√

2n2
√

n − 1
(n − 2 + nx)3/2 (7)

I Combine the functions Φn to one function Φ

Φ(x) =

{
−1 if x = −1,
Φn(x) if x ∈

[
− 1 + 2

n ,−1 + 2
n−1

]
for some n ≥ 2. (8)

I Key step: Prove

Ω ⊆
{

(x , y) ∈ [−1, 1]2 : Φ(x) ≤ y ≤ −Φ(−x)
}

=: ΩΦ. (9)

via induction on the number of stripes.

I Use a homotopy argument to show Ω = ΩΦ.
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What is new
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Figure: The curves γs (t) = H(s, t) for H being the homotopy shrinking ∂Ω into (1, 1).

Theorem (Schreyer, Paulin, T., JRSS-B, 2017)
The exact τ -ρ-region Ω fulfills

Ω =
{

(x , y) ∈ [−1, 1]2 : Φ(x) ≤ y ≤ −Φ(−x)
}
.
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What is new
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What is new

I Durbin & Stuart’s inequality is not sharp outside the points ±pn.

I Ω is not convex.

I For every point (x , y) ∈ Ω there is a shuffle A of M such that we have
(τ(A), ρ(A)) = (x , y).

I In other words: For each (x , y) ∈ Ω there exist (mutually) completely
dependent random variables X ,Y with (τ(X ,Y ), ρ(X ,Y )) = (x , y).

I Complete dependence everywhere in Ω.
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Extreme-Value Copulas

Extreme-Value Copulas

τ

ρ
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I Red: boundary of Ω
I Blue: Hutchinson-Lai inequ.
−1 +

√
1 + 3τ(Aa) ≤ ρ(Aa) ≤

min
{

3τ(Aa)
2 , 2τ(Aa)− τ(Aa)2

}
I Gray: conjectured exact τ -ρ-region for

EVC

Conjectured sharp inequalities for EVCs:

3τ(Aa)
2 + τ(Aa) ≤ ρ(Aa) ≤ 3τ(Aa)

2 + τ(Aa)3 −
1
3 (1− τ(Aa))2τ(Aa)4
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Extreme-Value Copulas

Archimedean Copulas

τ

ρ
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I Red: boundary of Ω
I Gray: conjectured exact τ -ρ-region for

Arch. Copulas
I Upper boundary coincides wit the one of Ω

Conjectured lower bound:

ρ ≥
{

7τ−2τ 3

5 , if τ ∈ [0, 1],
31τ−11τ 3

20 , if τ ∈ [−1, 0].

Wolfgang Trutschnig
τ vs. ρ


	Copulas
	Why copulas are important
	Two examples where copulas naturally pop-up

	 versus  in general
	What was known
	What is new

	 versus  in subclasses
	Extreme-Value Copulas


	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.299: 
	0.298: 
	0.297: 
	0.296: 
	0.295: 
	0.294: 
	0.293: 
	0.292: 
	0.291: 
	0.290: 
	0.289: 
	0.288: 
	0.287: 
	0.286: 
	0.285: 
	0.284: 
	0.283: 
	0.282: 
	0.281: 
	0.280: 
	0.279: 
	0.278: 
	0.277: 
	0.276: 
	0.275: 
	0.274: 
	0.273: 
	0.272: 
	0.271: 
	0.270: 
	0.269: 
	0.268: 
	0.267: 
	0.266: 
	0.265: 
	0.264: 
	0.263: 
	0.262: 
	0.261: 
	0.260: 
	0.259: 
	0.258: 
	0.257: 
	0.256: 
	0.255: 
	0.254: 
	0.253: 
	0.252: 
	0.251: 
	0.250: 
	0.249: 
	0.248: 
	0.247: 
	0.246: 
	0.245: 
	0.244: 
	0.243: 
	0.242: 
	0.241: 
	0.240: 
	0.239: 
	0.238: 
	0.237: 
	0.236: 
	0.235: 
	0.234: 
	0.233: 
	0.232: 
	0.231: 
	0.230: 
	0.229: 
	0.228: 
	0.227: 
	0.226: 
	0.225: 
	0.224: 
	0.223: 
	0.222: 
	0.221: 
	0.220: 
	0.219: 
	0.218: 
	0.217: 
	0.216: 
	0.215: 
	0.214: 
	0.213: 
	0.212: 
	0.211: 
	0.210: 
	0.209: 
	0.208: 
	0.207: 
	0.206: 
	0.205: 
	0.204: 
	0.203: 
	0.202: 
	0.201: 
	0.200: 
	0.199: 
	0.198: 
	0.197: 
	0.196: 
	0.195: 
	0.194: 
	0.193: 
	0.192: 
	0.191: 
	0.190: 
	0.189: 
	0.188: 
	0.187: 
	0.186: 
	0.185: 
	0.184: 
	0.183: 
	0.182: 
	0.181: 
	0.180: 
	0.179: 
	0.178: 
	0.177: 
	0.176: 
	0.175: 
	0.174: 
	0.173: 
	0.172: 
	0.171: 
	0.170: 
	0.169: 
	0.168: 
	0.167: 
	0.166: 
	0.165: 
	0.164: 
	0.163: 
	0.162: 
	0.161: 
	0.160: 
	0.159: 
	0.158: 
	0.157: 
	0.156: 
	0.155: 
	0.154: 
	0.153: 
	0.152: 
	0.151: 
	0.150: 
	0.149: 
	0.148: 
	0.147: 
	0.146: 
	0.145: 
	0.144: 
	0.143: 
	0.142: 
	0.141: 
	0.140: 
	0.139: 
	0.138: 
	0.137: 
	0.136: 
	0.135: 
	0.134: 
	0.133: 
	0.132: 
	0.131: 
	0.130: 
	0.129: 
	0.128: 
	0.127: 
	0.126: 
	0.125: 
	0.124: 
	0.123: 
	0.122: 
	0.121: 
	0.120: 
	0.119: 
	0.118: 
	0.117: 
	0.116: 
	0.115: 
	0.114: 
	0.113: 
	0.112: 
	0.111: 
	0.110: 
	0.109: 
	0.108: 
	0.107: 
	0.106: 
	0.105: 
	0.104: 
	0.103: 
	0.102: 
	0.101: 
	0.100: 
	0.99: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


